Advertisements
Advertisements
प्रश्न
Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane `vecr * (hati + 2hatj + 5hatk) + 9` = 0
पर्याय
`hati + 2hatj + 3hatk + lambda(hati + 2hatj - 5hatk)`
`(hati + 2hatj + 3hatk)lambda`
`hati + 2hatj + lambda(hati + 2hatj)`
None of these
MCQ
उत्तर
`hati + 2hatj + 3hatk + lambda(hati + 2hatj - 5hatk)`
Explanation:
Direction ratios of the normal of the plane `vecr * (hati + 2hatj - 5hatk) + 9` = 0 are 1, 2, – 5.
The equation of a line passing through and with a ratio of direction b1, b2, b3 is
`vecr = vecr_1 + (b_1 hati + b_2 hatj + b_3 hatk)`
Hence the line passing through (1, 2, 3) and having the direction ratios 1, 2, – 5 is
`vecr = hati + 2hatj + 3hatk + lambda(hati + 2hatj - 5hatk)`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?