Advertisements
Advertisements
प्रश्न
Find three numbers in G. P. such that their sum is 21 and sum of their squares is 189.
उत्तर
Let the three numbers in G. P. be `"a"/"r"`, a, ar.
According to the first condition,
`"a"/"r" + "a" + "ar"` = 21
∴ `1/"r" + 1 + "r" = 21/"a"`
∴ `1/"r" + "r" = 21/"a" - 1` ...(i)
According to the second condition,
`"a"^2/"r"^2 + "a"^2 + "a"^2"r"^2` = 189
∴ `1/"r"^2 + 1 + "r"^2 = 189/"a"^2`
∴ `1/"r"^2 + "r"^2 = 189/"a"^2 - 1` ...(ii)
On squaring equation (i), we get
`1/"r"^2 + "r"^2 + 2 = 441/"a"^2 - 42/"a" + 1`
∴ `(189/"a"^2 - 1) + 2 = 441/"a"^2 - 42/"a" + 1` ...[From (ii)]
∴ `189/"a"^2 + 1 = 441/"a"^2 - 42/"a" + 1`
∴ `441/"a"^2 - 189/"a"^2 - 42/"a" ` = 0
∴ `252/"a"^2 = 42/"a"`
∴ 252 = 42a
∴ a = 6
Substituting the value of a in (i), we get
`1/"r" + "r"= 21/6 - 1`
∴ `(1 + "r"^2)/"r" = 15/6`
∴ `(1 + "r"^2)/"r" = 5/2`
∴ 2r2 – 5r + 2 = 0
∴ 2r2 – 4r – r + 2 = 0
∴ (2r – 1) (r – 2) = 0
∴ r = `1/2 or 2`
When a = 6, r = `1/2.`
`"a"/"r"` = 12, a = 6, ar = 3
When a = 6, r = 2
`"a"/"r"` = 3, a = 6, ar = 12
∴ the three numbers are 12, 6, 3 or 3, 6, 12.
APPEARS IN
संबंधित प्रश्न
Which term of the G. P. 5, 25, 125, 625, … is 510?
Find 2 + 22 + 222 + 2222 + … upto n terms.
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, …
If for a sequence, `t_n = (5^(n- 3))/(2^(n - 3))`, show that the sequence is a G.P.
Find its first term and the common ratio.
For the G.P. if a = `2/3` t6 = 162, find r.
Express the following recurring decimals as a rational number.
`4.bar18`
For the G.P. if a = `2/3`, t6 = 162, find r.
Verify whether the following sequence is G.P. If so, find tn.
`sqrt5 , 1/sqrt5 , 1/(5sqrt5) , 1/(25sqrt5)`, ...
For the G.P. if a = `2/3`, t6 = 162, find r.
Verify whether the following sequences are G.P. If so, find tn.
`sqrt5, 1/sqrt5, 1/(5sqrt5), 1/(25sqrt5), ...`
For the G.P. if a = `2/3` , t6 = 162 , find r
Verify whether the following sequence is G.P. If so, find tn.
`sqrt5, 1/sqrt5, 1/(5sqrt5), 1/(25sqrt5), ...`
For the G.P. if a = `2/3`, t6 = 162, find r.