Advertisements
Advertisements
प्रश्न
Find, using the quadratic formula, the roots of the following quadratic equations, if they exist
3x2 – 5x + 2 = 0
उत्तर
Given quadratic equation is 3x2 – 5x + 2 = 0
D = b2 – 4ac
= (–5)2 – 4(3)(2)
= 25 – 24
= 1
Since D > 0, the roots of the given quadratic equation are real and distinct.
Using quadratic formula, we have
`x = (-b ± sqrt(b^2 - 4ac))/(2a)`
`=> x = (5 ± sqrt((-5)^2 - 4(3)(2)))/(2(3)`
`=> x = (5 ± sqrt(25 - 24))/6`
`=> x = (5 ± 1)/6`
`=> x = (5 + 1)/6` or `x = (5 - 1)/6`
`=> x = 6/6` or `x = 4/6`
`=> x = 1` or `x = 2/3`
APPEARS IN
संबंधित प्रश्न
Form the quadratic equation if its roots are –3 and 4.
If `sqrt(2)` is a root of the equation `"k"x^2 + sqrt(2x) - 4` = 0, find the value of k.
If the roots of the given quadratic equation are real and equal, then find the value of ‘m’.
(m – 12)x2 + 2(m – 12)x + 2 = 0
The value of k for which the equation x2 + 2(k + 1)x + k2 = 0 has equal roots is:
Find whether the following equation have real roots. If real roots exist, find them.
–2x2 + 3x + 2 = 0
State whether the following quadratic equation have two distinct real roots. Justify your answer.
`sqrt(2)x^2 - 3/sqrt(2)x + 1/sqrt(2) = 0`
Find the roots of the quadratic equation by using the quadratic formula in the following:
`x^2 + 2sqrt(2)x - 6 = 0`
Compare the quadratic equation `x^2 + 9sqrt(3)x + 24 = 0` to ax2 + bx + c = 0 and find the value of discriminant and hence write the nature of the roots.
‘The sum of the ages of a boy and his sister (in years) is 25 and product of their ages is 150. Find their present ages.
If one root of the quadratic equation 3x2 – 8x – (2k + 1) = 0 is seven times the other, then find the value of k.