Advertisements
Advertisements
प्रश्न
Find the value of p, if the mean of the following distribution is 20.
x | 15 | 17 | 19 | 20+P | 23 |
f | 2 | 3 | 4 | 5P | 6 |
उत्तर
x | f | fx |
15 | 2 | 30 |
17 | 3 | 51 |
19 | 4 | 76 |
20+P | 5P | 100P + 5P2 |
23 | 6 | 138 |
N = 5P + 15 | `sum`fx = 295 + 100P + 5P2 |
Given
⇒ Mean = 20
`rArr(sumfx)/N=20`
`rArr(295+100P+5P^2)/(5P+15)=20`
⇒ 295 + 100P + 5P2 = 20(5P + 15)
⇒ 295 + 100P + 5P2 = 100P + 300
⇒ 100P - 100P + 5P2 = 300 - 295
⇒ 5P2 = 5
⇒ P2 = 1
⇒ P = 1
APPEARS IN
संबंधित प्रश्न
The following table gives the literacy rate (in percentage) of 35 cities. Find the mean literacy rate.
Literacy rate (in %) | 45 − 55 | 55 − 65 | 65 − 75 | 75 − 85 | 85 − 95 |
Number of cities | 3 | 10 | 11 | 8 | 3 |
If the mean of the following data is 15, find p.
x | 5 | 10 | 15 | 20 | 25 |
f | 6 | P | 6 | 10 | 5 |
The following table gives the number of boys of a particular age in a class of 40 students. Calculate the mean age of the students
Age (in years) | 15 | 16 | 17 | 18 | 19 | 20 |
No. of students | 3 | 8 | 10 | 10 | 5 | 4 |
Candidates of four schools appear in a mathematics test. The data were as follows:-
Schools | No. of Candidates | Average Score |
I | 60 | 75 |
II | 48 | 80 |
III | NA | 55 |
IV | 40 | 50 |
If the average score of the candidates of all the four schools is 66, find the number of candidates that appeared from school III.
The mean of the following frequency data is 42, Find the missing frequencies x and y if the sum of frequencies is 100
Class interval |
0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency | 7 | 10 | x | 13 | y | 10 | 14 | 9 |
Find x and y.
Find the mean of the following data, using assumed-mean method:
Class | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 | 100 - 120 |
Frequency | 20 | 35 | 52 | 44 | 38 | 31 |
The distances covered by 250 public transport buses in a day is shown in the following frequency distribution table. Find the median of the distance.
Distance (km)
|
200 - 210 | 210 - 220 | 220 - 230 | 230 - 240 | 240 - 250 |
No. of buses | 40 | 60 | 80 | 50 | 20 |
The following table gives the wages of worker in a factory:
Wages in ₹ | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 |
No. of Worker's | 5 | 8 | 30 | 25 | 14 | 12 | 6 |
Calculate the mean by the short cut method.
There is a grouped data distribution for which mean is to be found by step deviation method.
Class interval | Number of Frequency (fi) | Class mark (xi) | di = xi - a | `u_i=d_i/h` |
0 - 100 | 40 | 50 | -200 | D |
100 - 200 | 39 | 150 | B | E |
200 - 300 | 34 | 250 | 0 | 0 |
300 - 400 | 30 | 350 | 100 | 1 |
400 - 500 | 45 | 450 | C | F |
Total | `A=sumf_i=....` |
Find the value of A, B, C, D, E and F respectively.
If xi’s are the midpoints of the class intervals of grouped data, fi’s are the corresponding frequencies and `barx` is the mean, then `sum(f_ix_i - barx)` is equal to ______.