Advertisements
Advertisements
प्रश्न
Find the values of k for which the roots are real and equal in each of the following equation:
(k + 1)x2 - 2(k - 1)x + 1 = 0
थोडक्यात उत्तर
उत्तर
The given equation is (k + 1)x2 - 2(k - 1)x + 1 = 0
The given equation is in the form of ax2 + bx + c = 0
where a = (k + 1), b = -2(k - 1) and c = 1
Therefore, the discriminant
D = b2 - 4ac
= (-2(k - 1))2 - 4 x (k + 1) x (1)
= 4(k - 1)2 - -4k - 4
= 4(k2 + 1 - 2k) - 4k - 4
= 4k2 + 4 - 8k - 4k - 4
= 4k2 - 12k
∵ Roots of the given equation are real and equal
∴ D = 0
4k2 - 12k = 0
4k(k - 3) = 0
k = 0
Or k - 3 = 0
k = 3
Hence, the value of k = 0, 3.
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?