рдорд░рд╛рдареА

Find the Volume Bounded by the Paraboloid ЁЭТЩЁЭЯР+ЁЭТЪЁЭЯР=ЁЭТВЁЭТЫ and the Cylinder ЁЭТЩЁЭЯР+ЁЭТЪЁЭЯР=ЁЭТВЁЭЯР. - Applied Mathematics 2

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Find the volume bounded by the paraboloid ЁЭТЩЁЭЯР+ЁЭТЪЁЭЯР=ЁЭТВЁЭТЫ and the cylinder ЁЭТЩЁЭЯР+ЁЭТЪЁЭЯР=ЁЭТВЁЭЯР. 

 

рдЙрддреНрддрд░

The equations of the cylinder and the paraboloid in polar form are r = a and r2 = az. 

Now, z varies from z = 0 to z = r2/a, r varie from r = 0 to r = a and θ varies from θ = 0 to θ =` pi/2` taken 4 times. 

 

∴ `V=4int_(θ=0)^(pi/2) int_(r=0)^a int_(z=0)r^2/a`  ЁЭССЁЭСЯ ЁЭССЁЭЬГ ЁЭССЁЭСз 

∴` V=4 int_(θ=0)^(pi/2) r[Z]_0^((r"^2)/a)`  ЁЭССЁЭСЯЁЭССЁЭЬГ 

∴ `V= 4 int_(θ=0)^(pi/2) int_(r=0)^a r^3/a dr dθ` 

∴ `V=4/a int_θ^(pi/2) [r^4/4]_0^a dθ` 

∴` V=4/a int_0^(pi/2) a^4/4 dθ` 

∴ `V=a^3 int_0^(pi/2) dθ`  

∴` V= a^3 [θ]_0^(pi/2)` 

∴ `V=( pia^3)/2`

shaalaa.com
Application of Double Integrals to Compute Mass
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
2018-2019 (December) CBCGS
Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Course
Use app×