Advertisements
Advertisements
प्रश्न
Find whether the value x = `(1)/(a^2)` and x = `(1)/(b^2)` are the solution of the equation:
a2b2x2 - (a2 + b2) x + 1 = 0, a ≠ 0, b ≠ 0.
उत्तर
a2b2x2 - (a2 + b2) x + 1 = 0; x = `(1)/(a^2), x = (1)/(b^2)`
By putting x = `(1)/(a^2)` in L.H.S. of equation
L.H.S. = `a^2b^2 xx (1/a^2)^2 - (a^2 + b^2) xx (1)/(a^2) + 1`
= `b^2/a^2 - 1 - b^2/a^2 + 1` = 0 = R.H.S.
By Putting x = `(1)/b^2`, in L.H.S. of equation
L.H.S. = `a^2b^2 xx (1/b^2)^2 - (a^2 + b^2) xx (1)/(b^2) + 1`
= `a^2/b^2 - a^2/b^2 - 1 + 1` = 0 = R..H.S.
Hence, x = `(1)/a^2,(1)/b^2` are the solution of the equation.
APPEARS IN
संबंधित प्रश्न
Check whether the following is quadratic equation or not.
`(x+1/x)^2=3(1+1/x)+4`
In the following, determine whether the given values are solutions of the given equation or not:
2x2 - x + 9 = x2 + 4x + 3, x = 2, x =3
Solve `2x^2 - 1/2 x = 0`
Solve the following equation using the formula:
`(2x)/(x - 4) + (2x - 5)/(x - 3) = 8 1/3`
Which of the following are quadratic equation in x?
`x-6/x=3`
`x^2+12x+35=0`
`x^2-(2b-1)x+(b^2-b-20)=0`
`(x+3)/(x-2)-(1-x)/x=17/4`
`4^((x+1))+4^((1-x))=10`
Solve:
(x2 – 3x)2 – 16(x2 – 3x) – 36 = 0