Advertisements
Advertisements
प्रश्न
Find the zeros of the quadratic polynomial 9x2 - 5 and verify the relation between the zeros and its coefficients.
बेरीज
उत्तर
We have,
`9x^2 - 5 = (3x)^2 - (sqrt5)^2 = (3x - sqrt5)(3x + sqrt5)`
So, the value of 9x2 - 5 = 0
when `3x - sqrt5 = 0 `
i.e., when x = `sqrt5/3` or x = `(-sqrt5)/3`
Sum of the zeros
`= sqrt5/3 - sqrt5/3 = 0 = -((0))/9 = -["coefficient of x"/("coefficient of"x^2)]`
Product of the zeros
`= (sqrt5/3)xx((-sqrt5)/3) = (-5)/9 =["coefficient of x"/("coefficient of"x^2)]`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?