Advertisements
Advertisements
प्रश्न
For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`
पर्याय
0
1
3
`1/3`
MCQ
उत्तर
`1/3`
Explanation:
Let `y = (1 - x + x^2)/(1 + x + x^2)`
`(dy)/(dx) = ((-1 + 2x)(1 + x + x^2) - (1x + 2x)(1 + 2x))/(1 + x + x^2)^2`
Numerator of = `(dy)/(dx) (-1 + 2x)(1 + x + x^2) - (1 + 2x)(1 - x + x^2)`
= `(-1 - x - x^2) + (2x + 2x^2 + 2x^3) - (1 - x + x^2) - (2x - 2x^2 + 2x^3)`
= `-2 + 2x^2 = 2(x^2 - 1) = 2(x - 1)(x + 1)`
∴ `(dy)/(dx) = (2(x - 1)(x + 1))/(x^2 + x + 1)^2`
`(dy)/(dx)` = 0 at `x = 1, -1`
`Ax = 1, (dy)/(dx)` Changes sign from negative to positive.
`y` is minimum at `x` = 1
Minimum value of `(1 - x + x^2)/(1 + x + x^2) = (1 - 1 + 1)/(1 + 1 + 1) = 1/3`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?