Advertisements
Advertisements
प्रश्न
For an ideal liquid ______.
- the bulk modulus is infinite.
- the bulk modulus is zero.
- the shear modulus is infinite.
- the shear modulus is zero.
उत्तर
a and d
Explanation:
Because as an ideal liquid is not compressible
Bulk modulus
`(K) = (-p(V))/(ΔV)` .......(∵ ΔV = 0)
As ΔV = 0 for ideal liquid
Therefore, K = ∞ for the ideal liquid
Since, no tangential force on the liquid, shearing strain
Δθ = 0, F = 0
`H = (F/A)/(Δθ) = 0/0` = indeterminate value
APPEARS IN
संबंधित प्रश्न
Compute the bulk modulus of water from the following data: Initial volume = 100.0 litre, Pressure increase = 100.0 atm (1 atm = 1.013 × 105 Pa), Final volume = 100.5 litre. Compare the bulk modulus of water with that of air (at constant temperature). Explain in simple terms why the ratio is so large.
How much should the pressure on a litre of water be changed to compress it by 0.10%?
The Marina trench is located in the Pacific Ocean, and at one place it is nearly eleven km beneath the surface of the water. The water pressure at the bottom of the trench is about 1.1 × 108 Pa. A steel ball of initial volume 0.32 m3 is dropped into the ocean and falls to the bottom of the trench. What is the change in the volume of the ball when it reaches to the bottom?
Find the increase in pressure required to decrease the volume of a water sample by 0.01%. Bulk modulus of water = 2.1 × 109 N m−2.
Estimate the change in the density of water in ocean at a depth of 400 m below the surface. The density of water at the surface = 1030 kg m−3 and the bulk modulus of water = 2 × 109 N m−2.
The ratio of adiabatic bulk modulus and isothermal bulk modulus of gas is `("where" γ = "C"_"P"/"C"_"V")`
To what depth must a rubber ball be taken in deep sea so that its volume is decreased by 0.1%. (The bulk modulus of rubber is 9.8 × 108 Nm–2; and the density of sea water is 103 kg m–3.)
A gas undergoes a process in which the pressure and volume are related by VPn = constant. The bulk modulus of the gas is ______.
A ball falling in a lake of depth 200 m shows a decrease of 0.1% in its volume. The bulk modulus of elasticity of the material of the ball is ______.
(Take g = 10 m/s2)
A solid sphere of radius r made of a soft material of bulk modulus K is surrounded by a liquid in a cylindrical container. A massless piston of the area floats on the surface of the liquid, covering the entire cross-section of the cylindrical container. When a mass m is placed on the surface of the piston to compress the liquid, the fractional decrement in the radius of the sphere `((dr)/r)`, is ______.