Advertisements
Advertisements
प्रश्न
For the non-stoichiometric reaction
\[\ce{2A + B -> C + D}\], the following kinetic data were obtained in three separate experiments, all at 298 K.
Initial concentration (A) |
Initial concentration (B) |
Initial rate of formation of C (mol dm−3 s−1) |
0.1 M | 0.1 M | 1.2 × 10−3 |
0.1 M | 0.2 M | 1.2 × 10−3 |
0.2 M | 0.1 M | 2.4 × 10−3 |
The rate law for the formation of C is:
पर्याय
`("d"["C"])/"dt" = "k"["A"]["B"]`
`("d"["C"])/"dt" = "k"["A"]^2["B"]`
`("d"["C"])/"dt" = "k"["A"]["B"]^2`
`("d"["C"])/"dt" = "k"["A"]`
उत्तर
`("d"["C"])/"dt" = "k"["A"]`
Explanation:
The rate law expression is k[A]x[B]y
∴ `("d"["C"])/"dt"` = k[A]x[B]y
Substituting the given values in above equation for three separate experiments we get,
1.2 × 10−3 = k[0.1]x[0.1]y ........(i)
1.2 × 10−3 = k[0.1]x[0.2]y ........(ii)
2.4 × 10−3 = k[0.2]x[0.1]y ........(iii)
Dividing equation (i) by (ii)
`(1.2 xx 10^-3)/(1.2 xx 10^-3) = ("k"[0.1]^"x"[0.1]"y")/("k"[0.1]^"x"[0.2]^"y")`
1 = `[1/2]^"y"` .....(∴ y = 0)
Now Dividing equation (i) by (iii)
`(1.2 xx 20^-3)/(2.4 xx 10^-3) = ("k"[0.1]^"x"[0.1]^"y")/("k"[0.2]^"x"[0.1]^"y")`
`[1/2]^1 = [1/2]^"x"`
x = 1
Hence, the rate law expression becomes
`("d"["C"])/"dt"` = k[A]1[B]0 = k[A] (∵ [B]0 = 1)