मराठी

For the non-stoichiometric reaction \\ce{2A + B -> C + D}\, the following kinetic data were obtained in three separate experiments, all at 298 K. -

Advertisements
Advertisements

प्रश्न

For the non-stoichiometric reaction

\[\ce{2A + B -> C + D}\], the following kinetic data were obtained in three separate experiments, all at 298 K.

Initial concentration
(A)
Initial concentration
(B)
Initial rate of formation of C
(mol dm−3 s−1)
0.1 M 0.1 M 1.2 × 10−3
0.1 M 0.2 M 1.2 × 10−3
0.2 M 0.1 M 2.4 × 10−3

The rate law for the formation of C is:

पर्याय

  • `("d"["C"])/"dt" = "k"["A"]["B"]`

  • `("d"["C"])/"dt" = "k"["A"]^2["B"]`

  • `("d"["C"])/"dt" = "k"["A"]["B"]^2`

  • `("d"["C"])/"dt" = "k"["A"]`

MCQ

उत्तर

`("d"["C"])/"dt" = "k"["A"]`

Explanation:

The rate law expression is k[A]x[B]y

∴ `("d"["C"])/"dt"` = k[A]x[B]y

Substituting the given values in above equation for three separate experiments we get,

1.2 × 10−3 = k[0.1]x[0.1]y ........(i)

1.2 × 10−3 = k[0.1]x[0.2]y ........(ii)

2.4 × 10−3 = k[0.2]x[0.1]y ........(iii)

Dividing equation (i) by (ii)

`(1.2 xx 10^-3)/(1.2 xx 10^-3) = ("k"[0.1]^"x"[0.1]"y")/("k"[0.1]^"x"[0.2]^"y")`

1 = `[1/2]^"y"` .....(∴ y = 0)

Now Dividing equation (i) by (iii)

`(1.2 xx 20^-3)/(2.4 xx 10^-3) = ("k"[0.1]^"x"[0.1]^"y")/("k"[0.2]^"x"[0.1]^"y")`

`[1/2]^1 = [1/2]^"x"`

x = 1

Hence, the rate law expression becomes

`("d"["C"])/"dt"` = k[A]1[B]0 = k[A] (∵ [B]0 = 1)

shaalaa.com
Rate of Reaction and Reactant Concentration
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×