Advertisements
Advertisements
प्रश्न
Give reason for the following :
The force of gravitation between two cricket balls is extremely small but that between a cricket ball and the earth is extremely large.
उत्तर
The gravitational force between two cricket balls is extremely small but that between a cricket ball and the earth is large because force depends on mass of an object. Greater the mass, greater is the force of gravitation. This force of gravity is very week between the two cricket balls because of their mass, so it cannot be felt. But with the earth, it can be felt as the earth’s mass is very large.
APPEARS IN
संबंधित प्रश्न
What is the acceleration of free fall?
The values of g at six distances A, B, C, D, E and F from the surface of the earth are found to be 3.08 m/s2, 9.23 m/s2, 0.57 m/s2, 7.34 m/s2, 0.30 m/s2 and 1.49 m/s2, respectively.
(a) Arrange these values of g according to the increasing distances from the surface of the earth (keeping the value of g nearest to the surface of the earth first)
(b) If the value of distance F be 10000 km from the surface of the earth, state whether this distance is deep . inside the earth or high up in the sky. Give reason for your answer.
A stone is thrown vertically upwards with initial velocity u reaches a height ‘h’ before coming down. Show that the time taken to go up is the same as the time taken to come down.
Choose one or more correct alternatives.
Which of the forces involved in dragging a heavy object on a smooth, horizontal surface, have the same magnitude?
- The horizontal applied force
- gravitational force
- reaction force in vertical direction
- force of friction
Figure shows the velocity-time graph of a particle of mass 100 g moving in a straight line. Calculate the force acting on the particle.
(Hint : Acceleration = Slope of the v-t graph)
What do you understand by the free fall?
The value of gravitational acceleration at the centre of earth is zero.
Free fall of an object does not depend on the mass of the object.
Read the given passage carefully and answer the questions.
We know that the force of gravity due to the earth acts on each and every object. When we were holding the stone in our hand, the stone was experiencing this force, but it was balanced by a force that we were applying on it in the opposite direction. As a result, the stone remained at rest. Once we release the stone from our hands, the only force that acts on it is the gravitational force of the earth and the stone falls down under its influence. Whenever an object moves under the influence of the force of gravity alone, it is said to be falling freely. Thus the released stone is in a free fall. In free fall, the initial velocity of the object is zero and goes on increasing due to the acceleration due to the gravity of the earth. During free fall, the frictional force due to air opposes the motion of the object and a buoyant force also acts on the object. Thus, true free fall is possible only in a vacuum.
1) Complete the following statement by choosing the right option.
The stone held in the hand is stable because on it __.
- two unbalanced forces are exerted.
- only the gravitational force of the earth is exerted.
- gravitational force of the earth is not exerted.
- two balanced forces are exerted.
2) Why does free fall not happen on the earth?
3) Why does the velocity of the object increase during the free fall?
4) Which type of force exerts on the object during free fall?
5) Why does free fall happen only in a vacuum?
Calculate the escape velocity on the surface of the moon given the mass and radius of the moon to be 7.34 × 1022 kg and 1.74 × 106 m respectively.
(Given: G = 6.67 × 10-11 Nm2/kg2)