Advertisements
Advertisements
प्रश्न
Given that: \[\sqrt{2} = 1 . 414, \sqrt{3} = 1 . 732, \sqrt{5} = 2 . 236 \text{ and } \sqrt{7} = 2 . 646,\] find the square root of the following:
\[\frac{25}{50}\]
उत्तर
From the given values, we can simplify the expressions in the following manner:
\[ \sqrt{\frac{27}{50}} = \frac{3\sqrt{3}}{5\sqrt{2}} = \frac{3 \times 1 . 732}{5 \times 1 . 414} = 0 . 735\]
APPEARS IN
संबंधित प्रश्न
Find the square root in decimal form:
0.00002025
Find the square root in decimal form:
0.00059049
Find the square root in decimal form:
0.00038809
Find the value of `sqrt (103.0225)`nd hence find the value of
`sqrt(10.302.25)`
`sqrt(1.030225)`
Find the square root the following correct to three places of decimal.
17
Find the square root the following correct to three places of decimal.
1.7
Find the square root the following correct to three places of decimal.
23.1
Find the square root the following correct to three places of decimal.
0.016
Given that: \[\sqrt{2} = 1 . 414, \sqrt{3} = 1 . 732, \sqrt{5} = 2 . 236 \text { and }\sqrt{7} = 2 . 646,\] evaluate the following:
\[\sqrt{\frac{144}{7}}\]
Given that: \[\sqrt{2} = 1 . 414, \sqrt{3} = 1 . 732, \sqrt{5} = 2 . 236 \text{ and } \sqrt{7} = 2 . 646,\]evaluate the following:
\[\sqrt{\frac{2500}{3}}\]