Advertisements
Advertisements
प्रश्न
Given that N = {1, 2, 3, ... , 100}. Then write the subset of N whose element are perfect square numbers.
उत्तर
We have, N= {1, 2, 3, 4, …, 100}
subset of N whose elements are perfect square = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}
APPEARS IN
संबंधित प्रश्न
{a, e} ⊂ {x : x is a vowel in the English alphabet}
{a, b} ⊄ {b, c, a}
{a} ⊂ {a. b, c}
Write the following as intervals: {x: x ∈ R, –12 < x < –10}
Write the following as intervals: {x : x ∈ R, 3 ≤ x ≤ 4}
Write the given intervals in set-builder form:
[6, 12]
Let A = {x : x ∈ N, x is a multiple of 3} and B = {x : x ∈ N and x is a multiple of 5}. Write \[A \cap B\]
Let A and B be two sets having 3 and 6 elements respectively. Write the minimum number of elements that \[A \cup B\]
If A and B are two sets such that \[A \subset B\], then write B' − A' in terms of A and B.
If A and B are two sets such that \[n \left( A \right) = 20, n \left( B \right) = 25\]\text{ and } \[n \left( A \cup B \right) = 40\], then write \[n \left( A \cap B \right)\]
In set-builder method the null set is represented by
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is an equilateral triangle in a plane} _____ {x : x is a triangle in the same plane}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{3, 4} ∈ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{{3, 4}} ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 5} ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
Φ ∈ A
Write down all the subsets of the following set:
{1, 2, 3}
Given that N = {1, 2, 3, ..., 100}, then write the subset A of N, whose element are odd numbers.
State true or false for the following statement given below:
Q ∩ R = Q, where Q is the set of rational numbers and R is the set of real numbers.
Given that N = {1, 2, 3, ... , 100}. Then write the subset of N whose elements are even numbers.
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by `n/2`
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a + 1 = 6, a ∈ Y
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a is less than 6 and a ∈ Y
State True or False for the following statement.
Q ∪ Z = Q, where Q is the set of rational numbers and Z is the set of integers.