Advertisements
Advertisements
प्रश्न
Harish made a rectangular garden, with its length 5 metres more than its width. The next year, he increased the length by 3 metres and decreased the width by 2 metres. If the area of the second garden was 119 sq m, was the second garden larger or smaller ?
उत्तर
In first case,
Let length of the garden = x m
then width = (x – 5) m
Area = l x b = x(x – 5) sq. m
In second case,
Length = (x + 3)m
and width = x - 5 - 2 = (x - 7)m
According to the condition,
(x + 3)(x - 7) = 119
⇒ x2 - 7x + 3x - 21 = 119
⇒ x2 - 4x - 21 - 119 = 0
⇒ x2 - 4x - 140 = 0
⇒ x2 - 14x + 10x - 140 = 0
⇒ x(x - 14) + 10(x - 14) = 0
⇒ (x - 14)(x + 10) = 0
Either x - 14 = 0,
then x = 14
or
x + 10 = 0,
then x = -10,
but it is not possible as it is negative.
∴ Length of first garden = 14m
and width = 14 - 5 = 9m
Area
= l x b
= 14 x 9
= 126m2
Difference of areas of two rectangles
= 126 - 119
= 7sq.m.
∴ Area of second garden is smaller than the area of the first garden by 7 sq.m.
APPEARS IN
संबंधित प्रश्न
The sum of a number and its reciprocal is 17/4. Find the number.
The speed of a boat in still water is 8 km/hr. It can go 15 km upstream and 22 km downstream in 5 hours. Find the speed of the stream.
Solve the following quadratic equations by factorization:
`4(2x – 3)^2 – (2x – 3) – 14 = 0`
Solve the following quadratic equation by factorisation.
`sqrt2 x^2 + 7x + 5sqrt2 = 0` to solve this quadratic equation by factorisation, complete the following activity.
`sqrt2 x^2 + 7x + 5sqrt2 = 0`
`sqrt2x^2+square+square+5sqrt2=0`
`x("______") + sqrt2 ("______") = 0`
(______) (x + 2) = 0
(______) = 0 or (x + 2) = 0
∴ x = `square` or x = - 2
∴ `square` and `sqrt(-2)` are roots of the equation.
Solve the following quadratic equations by factorization: \[\frac{5 + x}{5 - x} - \frac{5 - x}{5 + x} = 3\frac{3}{4}; x \neq 5, - 5\]
Solve the following equation: `"a"/("x" - "a") + "b"/("x" - "b") = (2"c")/("x" - "c")`
Solve equation using factorisation method:
`x + 1/x = 2.5`
If an integer is added to its square the sum is 90. Find the integer with the help of a quadratic equation.
Find three consecutive odd integers, the sum of whose squares is 83.
If x = 3 is one root of the quadratic equation 2x2 + px + 30 = 0, find the value of p and the other root of the quadratic equation.