Advertisements
Advertisements
प्रश्न
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
पर्याय
3
4
`1/3`
`1/4`
MCQ
रिकाम्या जागा भरा
उत्तर
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is `underlinebb(1/3)`.
Explanation:
Here, `int_0^k dx/(2 + 18x^2) = π/24`
`\implies π/24 = 1/18 int_0^k dx/((1/9) + x^2) = 1/18int_0^k dx/((1/3)^2 + x^2)`
`\implies π/24 = 1/18 xx 1/((1/3)) tan^-1[x/((1/3))]_0^k`
`\implies π/24 = 3/18 tan^-1[3x]_0^k = 1/6[tan^-1 3k - tan^-1 0]`
`\implies π/24 = 1/6[tan^-1 3k - 0]`
∴ `(6π)/24` = tan–1 3k
`\implies tan π/4` = 3k
`\implies` 1 = 3 K
`\implies` K = `1/3`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?