Advertisements
Advertisements
प्रश्न
If A = `|(1,3),(3,2)|` and B = `|(-2,3),(-4,1)|` find AB
उत्तर
A = `|(1,3),(3,2)|_(2 xx 2)` B = `|(-2,3),(-4,1)|_(2 xx 2)`
AB = `|(1,3),(3,2)| |(-2,3),(-4,1)|`
`= |(-2-12 , 3 + 3),(-6-8 , 9 + 2)| = |(-14 , 6),(-14 , 11)|_(2 xx 2)`
APPEARS IN
संबंधित प्रश्न
State, whether the following statement is true or false. If false, give a reason.
The matrices A2 × 3 and B2 × 3 are conformable for subtraction.
If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find B + C
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
A + B = B + A
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
A – B = B – A
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
(A – B)2 = A2 – 2A . B + B2
If M = `[(2,1),(1,-2)] `; find M2, M3 and M5.
If A = `|(5,"r"),("p",7)|` , c and if A + B = (9,7),(5,8) , find the values of p,q,r and s.
Find the inverse of the matrix `[ (1, 2, 3), (1, 1, 5), (2, 4, 7)]` by using the adjoint method.
`
`[(2, -1),(5, 1)]`
`[(2 ,- 4),(0 ,0),(1 , 7)]`