Advertisements
Advertisements
प्रश्न
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.
पर्याय
`1/2`
2
`11/2`
`46/5`
उत्तर
If 2 cosθ + sinθ = `1(θ ≠ π/2)`, then 7 cosθ + 6 sinθ is equal to `underlinebb(46/5)`.
Explanation:
2 cosθ + sinθ = 1
Squaring both sides, we get
(2 cosθ + sin θ)2 = 12
⇒ 4cos2 θ + sin2 θ + 4 sinθcosθ = 1
⇒ 3cos2 θ + (cos2 θ + sin2 θ) + 4 sinθcosθ = 1
⇒ 3cos2 θ + 1 + 4 sinθcosθ = 1
⇒ 3cos2 θ + 4 sinθcosθ = 0
⇒ cosθ(3cosθ + 4sinθ) = 0
⇒ 3cosθ + 4sinθ = 0
⇒ 3cosθ = -4sinθ
⇒ `(-3)/4` = tanθ = `sqrt(sec^2theta-1)=(-3)/4` `(because tanθ = sqrt(sec^2theta-1)=(-3)/4)`
⇒ sec2θ - 1 = `((-3)/4)^2=9/16`
⇒ sec2θ = `9/16+1=25/16`
⇒ secθ = `5/4`
or cosθ = `4/5` ...(i)
Now, sin2 θ + cos2 θ = 1
⇒ sin2 θ + `(4/5)^2` = 1
⇒ sin2 θ = `1-16/25=9/25`
sinθ = ±`3/5` ...(ii)
Taking `(sinθ = +3/5)` because `(sinθ = -3/5)` cannot satisfy the given equation.
Therefore; 7 cosθ + 6 sinθ
= `7xx4/5+6xx3/5=28/5+18/5=46/5`