Advertisements
Advertisements
प्रश्न
If 21998 – 21997 – 21996 + 21995 = k.21995, then the value of k is ______.
पर्याय
1
2
3
4
उत्तर
If 21998 – 21997 – 21996 + 21995 = k.21995, then the value of k is 3.
Explanation:
Given, 21998 – 21997 – 21996 + 21995 = k.21995
⇒ `2^(1995 + 3) - 2^(1995 + 2) - 2^(1995 + 1) + 2^(1995) xx 1` = k.21995
⇒ 21995[23 – 22 – 21 + 1] = k.21995 ......[∵ am+n = am × an]
⇒ 21995[8 – 4 – 2 + 1] = k.21995
⇒ 3 = `(k.2^1995)/2^1995`
⇒ 3 = k or k = 3
So, the value of k is 3.
APPEARS IN
संबंधित प्रश्न
Using laws of exponents, simplify and write the answer in exponential form:
25 × 55
Simplify and express the following in exponential form:
`(2^3 xx 3^4 xx 4)/(3 xx 32)`
Express the following as a product of prime factors only in exponential form:
108 × 192
Express the following as a product of prime factors only in exponential form:
768
20 × 10000
am × an is equal to ______.
(10 + 10)10 = 1010 + 1010