Advertisements
Advertisements
प्रश्न
If (3x − 1)7 = a7x7 + a6x6 + a5x5 +...+ a1x + a0, then a7 + a5 + ...+a1 + a0 =
पर्याय
0
1
128
64
उत्तर
Given that,
`(3x - 1)^7 = a_7x^2 + a_5x^5 + ...... +a_1x +a_0`
Putting x =1,
We get
`(3 xx1 - 1)^7 = a_6 (1)^5 + a_5 (1)^5 + .......+a_1(1) + a_0`
`a_2 + a_6 + a_5 + ..... +a_1 + a_0 = 128`
APPEARS IN
संबंधित प्रश्न
Write the degrees of each of the following polynomials
`7x3 + 4x2 – 3x + 12`
Identify polynomials in the following:
`f(x)=4x^3-x^2-3x+7`
If the polynomials ax3 + 3x2 − 13 and 2x3 − 5x + a, when divided by (x − 2) leave the same remainder, find the value of a.
3x3 − x2 − 3x + 1
x4 + 10x3 + 35x2 + 50x + 24
Define zero or root of a polynomial.
Write the remainder when the polynomialf(x) = x3 + x2 − 3x + 2 is divided by x + 1.
If x + 1 is a factor of the polynomial 2x2 + kx, then k =
Factorise the following:
6x2 + 16xy + 8y2
Factorise the following:
`sqrt(5)"a"^2 + 2"a" - 3sqrt(5)`