Advertisements
Advertisements
प्रश्न
If A = `[(1, 2),(4, 1),(5, 6)]` B = `[(1, 2),(6, 4),(7, 3)]`, then verify that: (A – B)′ = A′ – B′
उत्तर
Given that: A = `[(1, 2),(4, 1),(5, 6)]` and B = `[(1, 2),(6, 4),(7, 3)]`
L.H.S. (A – B)' = `[((1, 2),(4, 1),(5, 6)) - ((1, 2),(6, 4),(7, 3))]^'`
= `[(1 - 1, 2 - 2),(4 - 6, 1 - 4),(5 - 7, 6 - 3)]^'`
= `[(0, 0),(-2, - 3),(-2, 3)]^'`
= `[(0, -2, -2),(0, -3, 3)]`
R.H.S. A' – B' = `[(1, 2),(4, 1),(5, 6)]^' - [(1, 2),(6, 4),(7, 3)]^'`
= `[(1, 4, 5),(2, 1, 6)] -[(1, 6, 7),(2, 4, 3)]`
= `[(1 - 1, 4 - 6, 5 - 7),(2 - 2, 1 - 4, 6 - 3)]`
= `[(0, -2, -2),(0, -3, 3)]`
Hence, L.H.S. = R.H.S.
(A – B)′ = A′ – B′ is verified.
APPEARS IN
संबंधित प्रश्न
if `[[9,-1,4],[-2,1,3]]=A+[[1,2,-1],[0,4,9]]`, then find the matrix A.
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find: A − 2B
Given the matrices
`A=[[2,1,1],[3,-1,0],[0,2,4]]` , `B=[[9,7,-1],[3,5,4],[2,1,6]]` `and C=[[2,-4,3],[1,-1,0],[9,4,5]]`
Verify that (A + B) + C = A + (B + C).
Find matrix A, if `[[1 2 -1],[0 4 9]]`
`+ A = [[9 -1 4],[-2 1 3]]`
\[A = \begin{bmatrix}2 & 3 \\ - 1 & 0\end{bmatrix}\],show that A2 − 2A + 3I2 = O
Show that the matrix \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]satisfies the equation A3 − 4A2 + A = O
If \[\begin{bmatrix}x & x - y \\ 2x + y & 7\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 8 & 7\end{bmatrix}\] , then find the value of y.
If \[\begin{bmatrix}a - b & 2a + c \\ 2a - b & 3c + d\end{bmatrix} = \begin{bmatrix}- 1 & 5 \\ 0 & 13\end{bmatrix}\] , find the value of b.
If matrix \[A = \begin{bmatrix}2 & - 2 \\ - 2 & 2\end{bmatrix}\] and A2 = pA, then write the value of p.
If \[\begin{bmatrix}a + 4 & 3b \\ 8 & - 6\end{bmatrix} = \begin{bmatrix}2a + 2 & b + 2 \\ 8 & a - 8b\end{bmatrix}\] , write the value of a − 2b.
Find matrix X so that `x ((1,2,3),(4,5,6)) = ((-7,-8,-9),(2,4,6))`.
If \[A = \begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix}\] and I is the identity matrix of order 2, then show that A2= 4 A − 3 I. Hence find A−1.
Matrix subtraction is associative
If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: (AB)C = A(BC)
Matrices of different orders can not be subtracted.
If A and B are two matrices of the same order, then A – B = B – A.
If A `= [(2,2,1),(1,3,1),(1,2,2)], "then" "A"^4 - 2 ^4` (A - I) = ____________.