मराठी

If A = [124156] B = [126473], then verify that: (A – B)′ = A′ – B′ - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(1, 2),(4, 1),(5, 6)]` B = `[(1, 2),(6, 4),(7, 3)]`, then verify that: (A – B)′ = A′ – B′

बेरीज

उत्तर

Given that: A = `[(1, 2),(4, 1),(5, 6)]` and B = `[(1, 2),(6, 4),(7, 3)]`

L.H.S. (A – B)' = `[((1, 2),(4, 1),(5, 6)) - ((1, 2),(6, 4),(7, 3))]^'`

= `[(1 - 1, 2 - 2),(4 - 6, 1 - 4),(5 - 7, 6 - 3)]^'`

= `[(0, 0),(-2, - 3),(-2, 3)]^'`

= `[(0, -2, -2),(0, -3, 3)]`

R.H.S. A' – B' = `[(1, 2),(4, 1),(5, 6)]^' - [(1, 2),(6, 4),(7, 3)]^'`

= `[(1, 4, 5),(2, 1, 6)] -[(1, 6, 7),(2, 4, 3)]`

= `[(1 - 1, 4 - 6, 5 - 7),(2 - 2, 1 - 4, 6 - 3)]`

= `[(0, -2, -2),(0, -3, 3)]`

Hence, L.H.S. = R.H.S.

(A – B)′ = A′ – B′ is verified.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Exercise [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 3 Matrices
Exercise | Q 28. (ii) | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

if `[[9,-1,4],[-2,1,3]]=A+[[1,2,-1],[0,4,9]]`, then find the matrix A.

 

If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find: A − 2B


Given the matrices 

`A=[[2,1,1],[3,-1,0],[0,2,4]]` , `B=[[9,7,-1],[3,5,4],[2,1,6]]`  `and  C=[[2,-4,3],[1,-1,0],[9,4,5]]`

Verify that (A + B) + C = A + (B + C).

 

Find matrix A, if  `[[1         2      -1],[0         4       9]]`

`+ A = [[9        -1           4],[-2        1            3]]`


\[A = \begin{bmatrix}2 & 3 \\ - 1 & 0\end{bmatrix}\],show that A2 − 2A + 3I2 = O


Show that the matrix  \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]satisfies the equation A3 − 4A2 + A = O


If \[A^T = \begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 0 & 1\end{bmatrix} and B = \begin{bmatrix}- 1 & 2 & 1 \\ 1 & 2 & 3\end{bmatrix}\] , find AT − BT.
 

 


If \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\] , show that A − AT is a skewsymmetric matrix.
 

 


If \[\begin{bmatrix}x & x - y \\ 2x + y & 7\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 8 & 7\end{bmatrix}\]  , then find the value of y.


If  \[\begin{bmatrix}a - b & 2a + c \\ 2a - b & 3c + d\end{bmatrix} = \begin{bmatrix}- 1 & 5 \\ 0 & 13\end{bmatrix}\] , find the value of b.


If matrix  \[A = \begin{bmatrix}2 & - 2 \\ - 2 & 2\end{bmatrix}\]  and A2 = pA, then write the value of p.

 


If \[\begin{bmatrix}a + 4 & 3b \\ 8 & - 6\end{bmatrix} = \begin{bmatrix}2a + 2 & b + 2 \\ 8 & a - 8b\end{bmatrix}\] , write the value of a − 2b.

 


Find matrix X so that `x ((1,2,3),(4,5,6)) = ((-7,-8,-9),(2,4,6))`.


If \[A = \begin{bmatrix}2 & - 1 \\ - 1 & 2\end{bmatrix}\] and I is the identity matrix of order 2, then show that A2= 4 A − 3 I. Hence find A−1.


Matrix subtraction is associative


If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: (AB)C = A(BC)


Matrices of different orders can not be subtracted.


If A and B are two matrices of the same order, then A – B = B – A.


If A `= [(2,2,1),(1,3,1),(1,2,2)], "then"  "A"^4 - 2 ^4` (A - I) = ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×