Advertisements
Advertisements
प्रश्न
if A = `[(3, -2),(4,-2)] and l = Matric [(1,0),(0,1)]` find k so that `A^2 = kA - 2I`
उत्तर
Given: A = `[(3, -2), (4,-2)],` I = `[(1,0),(0,1)]`
`"A"^2 = "A". "A" = [(3, -2),(4,-2)] [(3, -2),(4,-2)]`
`= [(9 - 8, -6 + 4),(12 - 8, -8 + 4)]`
`= [(1,-2),(4,-4)]`
KA - 2I = K `[(3, -2),(4,-2)] - 2 [(1,0),(0,1)]`
`= [(3"k", - 2"k"),(4"k", -2"k")] - [(2, 0),(0,2)]`
`= [(3"k" + 2, -2"k"),(4"k", -2"k" + 2)]`
`"A"^2 = "KA" - 2"I"`
`[(1,-2),(4,-4)] = [(3"k" - 2, -2"k"),(4"k", -2"k" - 2)]`
3k - 2 = 1
⇒ 3k = 3
k = 1
APPEARS IN
संबंधित प्रश्न
if `A = [(1,0,2),(0,2,1),(2,0,3)]` , prove that `A^2 - 6A^2 + 7A + 2I = 0`
If A = `[(3,1),(-1,2)]` show that `A^2 - 5A + 7I = 0`.
Find x, if `[x, -5, -1][(1,0,2),(0,2,1),(2,0,3)][(x),(4),(1)] = O`
A `= [(1,1,2),(0,2,-3),(3,-3,4)] "and B"^-1 = [(1,2,0),(0,3,-1),(1,0,2)]`
The restriction on n, k and P so that PY + WY will be defined are
If X, Y, Z, Wand P are matrices of order 2 × n, 3 × k, 2 × P and P × K respectively. if n = P, then the order of the matrix 7x – 5z is
If A = `[(1, 0),(2, 1)]`, B = `[(x, 0),(1, 1)]` and A = B2, then x equals ______.
If A = `[(1, 2, 3),(3, -2, 1),(4, 2, 1)]`, then show that A3 – 23A – 40I = 0.