Advertisements
Advertisements
प्रश्न
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.
पर्याय
a + b + c
abc
1
– 1
उत्तर
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals abc.
Explanation:
Given system of equations can be written as
(a – 1)x – y – z = 0
– x + (b – 1)y – z = 0
– x – y + (c – 1)z = 0
For non-trivial solution, we have
`|(a - 1, -1, -1),(-1, b - 1, -1),(-1, -1, c - 1)|` = 0
R2 `rightarrow` R2 – R3
`|(a - 1, -1, -1),(0, b, -c),(-1, -1, c - 1)|` = 0
C2 `rightarrow` C2 – C3
`|(a - 1, 0, -1),(0, b + c, -c),(-1, -c, c - 1)|` = 0
Apply R3 `rightarrow` R3 – R1
`|(a - 1, 0, -1),(0, b + c, -c),(-a, -c, c)|` = 0
`\implies` (a – 1)[bc + c2 – c2] – 1[a(b + c)] = 0
`\implies` (a – 1)[bc] – ab – ac = 0
`\implies` abc – bc – ab – ac = 0
i.e ab + bc + ca = abc