Advertisements
Advertisements
प्रश्न
If a function f(x) defined by
f(x) = `{{:("ae"^x + "be"^-x",", -1 ≤ x < 1),("c"x^2",", 1 ≤ x ≤ 3),("a"x^2 + 2"c"x",", 3 < x ≤ 4):}`
be continuous for some a, b, c ε R and f'(0) + f'(2) = e, then the value of a is ______.
पर्याय
`1/("e"^2 - 3"e" + 13)`
`"e"/("e"^2 - 3"e" - 13)`
`"e"/("e"^2 + 3"e" + 13)`
`"e"/("e"^2 - 3"e" + 13)`
उत्तर
If a function f(x) defined by
f(x) = `{{:("ae"^x + "be"^-x",", -1 ≤ x < 1),("c"x^2",", 1 ≤ x ≤ 3),("a"x^2 + 2"c"x",", 3 < x ≤ 4):}`
be continuous for some a, b, c ε R and f'(0) + f'(2) = e, then the value of a is `underlinebb(e/(e^2 - 3e + 13))`.
Explanation:
f(x) = `{{:("ae"^x + "be"^-x",", -1 ≤ x < 1),("c"x^2",", 1 ≤ x ≤ 3),("a"x^2 + 2"c"x",", 3 < x ≤ 4):}`
Continuous at x = 1
LHL = RHL
ae1 + be–1 = c
⇒ `"ae" + "b"/"e"` = c
⇒ ae2 + b = ec ...(i)
Cont at x = 3
LHL = RHL
9c = 9a + 3c × 2
3c = 9a
c = 3a ...(ii)
f'(0) + f'(2) = e ...(Given)
{aex + b)e–x)(–1)}x=0 + {2cx}x=2 = e
a – b + 2c2 = e
a – b + 4c = e ...(iii)
a – (ec – ae2) + 4c = e from (i)
a – (3ae – ae2) + 12a = e from (ii)
a{1 – 3e + e2 + 12} = e
a = `"e"/("e"^2 - 3"e" + 13)`