Advertisements
Advertisements
प्रश्न
If `bara=bari+2barj, barb=-2bari+barj,barc=4bari+3barj`, find x and y such that `barc=xbara+ybarb`
उत्तर
Given that `veca = hati +2hatj, vecb = −2hati +hatj, vecc = 4hati + 3hatj`
We need to find x and y such that `vecc = xveca + yvecb`
Substituting the values of a, b and c, in ` vec c = xveca + yvecb`, we have,
`4hati + 3hatj = x(hat i +2hatj )+ y (-2hati +hatj)`
`4hati + 3hatj = (x -2y)hat i + (2x + y) hatj`
Comparing the coefficients of i and j on both the sides, we have,
x-2y= 4
and
2x + y = 3
Solving the above simultaneous equations, we have,
x = 2 and y = -1
APPEARS IN
संबंधित प्रश्न
Express `-bari-3barj+4bark ` as a linear combination of vectors `2bari+barj-4bark,2bari-barj+3bark`
If`[ bara bar b barc ] ≠ 0 and barp = [ barb xx barc ]/([ bara bar b barc ]), barq = [ barc xx bara ]/([ bara bar b barc ]), barr = [ bara xx barb ]/[ bara bar b barc ]`
then `bara . barp + barb . barq + barc . barr` is equal to ______.