Advertisements
Advertisements
प्रश्न
If ‘a’ is the annual payment, ‘n’ is the number of periods and ‘i’ is compound interest for ₹ 1 then future amount of the ordinary annuity is
पर्याय
A = `"a"/"i" (1 + "i") [(1 + "i")^"n" - 1]`
A = `"a"/"i" [(1 + "i")^"n" - 1]`
P = `"a"/"i"`
P = `"a"/"i" (1 + "i") [1 - (1 + "i")^(-"n")]`
उत्तर
`underline("A" = "a"/"i" [(1 + "i")^"n" - 1])`
APPEARS IN
संबंधित प्रश्न
Find the amount of an ordinary annuity of 12 monthly payments of ₹ 1,500 that earns interest at 12% per annum compounded monthly. [(1.01)12 = 1.1262]
A bank pays 8% per annum interest compounded quarterly. Find the equal deposits to be made at the end of each quarter for 10 years to have ₹ 30,200? [(1.02)40 = 2.2080]
Find the present value of ₹ 2,000 per annum for 14 years at the rate of interest of 10% per annum. If the payments are made at the end of each payment period. [(1.1)–14 = 0.2632]
Find the present value of an annuity of ₹ 900 payable at the end of 6th month for 6 years. The money compounded at 8% per annum. [(1.04)–12 = 0.6252]
Find the amount at the end of 12 years of an annuity of ₹ 5,000 payable at the beginning of each year, if the money is compounded at 10% per annum. [(1.1)12 = 3.1384]
₹ 5000 is paid as perpetual annuity every year and the rate of C.I. 10%. Then present value P of immediate annuity is __________.
Example of contingent annuity is ___________.
Find the amount of annuity of ₹ 2000 payable at the end of each year for 4 years of money is worth 10% compounded annually. [(1.1)4 = 1.4641]
Find the amount of an ordinary annuity of ₹ 500 payable at the end of each year for 7 years at 7% per year compounded annually. [(1.07)7 = 1.6058]
A cash prize of ₹ 1,500 is given to the student standing first in examination of Business Mathematics by a person every year. Find out the sum that the person has to deposit to meet this expense. Rate of interest is 12% p.a.