मराठी

If a r.v. X has p.d.f., f(x) = 1xlog3, for 1 < x < 3, then E(X) and Var(X) are respectively ______ -

Advertisements
Advertisements

प्रश्न

If a r.v. X has p.d.f., f(x) = `1/(xlog3)`, for 1 < x < 3, then E(X) and Var(X) are respectively ______

पर्याय

  • `2/(log3), (4(log3 - 1))/(log3)^2`

  • `1/(log3), (4(log3 - 1))/(log3)`

  • `1/(log3)^2, ((log3 - 1))/(4(log3)^2`

  • `(4(log3 - 1))/(log3)^2, 2/(log3)^2`

MCQ
रिकाम्या जागा भरा

उत्तर

If a r.v. X has p.d.f., f(x) = `1/(xlog3)`, for 1 < x < 3, then E(X) and Var(X) are respectively `underline(2/(log3), (4(log3 - 1))/(log3)^2)`

Explanation:

E(X) = `int_-∞^∞ xf(x) = int_1^3 xf(x) dx`

= `int_1^3x 1/(xlog3)dx`

= `1/(log3)int_1^3 1dx = 1/(log3)[x]_1^3`

= `1/log3[3 - 1]`

= `2/log3`

E(X2) = `int_-∞^∞ x^2 f(x)dx`

= `int_1^3 x^2 f(x) dx`

= `int_1^3x^2. 1/(xlog3)dx`

= `1/log3int_1^3 x dx`

= `1/(2log3)[x^2]_1^3`

= `1/(2log3)`[9 - 1]

= `8/(2log3)`

= `4/(log3)`

∴ Var(X) = E(X2) - [E(X)]2

= `4/(log3) - (2/log3)^2`

= `4/((log3)) - 4/(log3)^2`

= `(4log3 - 4)/(log3)^2`

= `(4(log3 - 1))/(log3)^2`

shaalaa.com
Standard Deviation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×