Advertisements
Advertisements
प्रश्न
If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.
पर्याय
1
0
3
2
उत्तर
If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree 2.
Explanation:
Applying, C1→C1 + C2 + C3, we get
f(x) = `|(1 + (a^2 + b^2 + c^2 + 2)x, (1 + b^2)x, (1 + c^2)x),(1 + (a^2 + b^2 + c^2 + 2)x, 1 + b^2x, (1 + c^2)x),(1 + (a^2 + b^2 + c^2 + 2)x, (1 + b^2)x, (1 + c^2)x)|` ...[∵ a2 + b2 + c2 = –2]
= `|(1, (1 + b^2)x, (1 + c^2)x),(1, 1 + b^2x, (1 + c^2)x),(1, (1 + b^2)x, (1 + c^2)x)|`
Applying, R2→R2 – R1, R3→R3 – R1
∴ f(x) = `|(1, (1 + b^2)x, (1 + c^2)x),(0, 1 - x, 0),(0, 0, 1 - x)|`
f(x) = (x – 1)2
Hence degree = 2.