मराठी

If a2 + b2 + c2 = –2 and f(x) = |1+a2x(1+b2)x(1+c2)x(1+a2)x1+b2x(1+c2)x(1+a2)x(1+b2)x(1+c2)x| then f(x) is a polynomial of degree ______. -

Advertisements
Advertisements

प्रश्न

If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.

पर्याय

  • 1

  • 0

  • 3

  • 2

MCQ
रिकाम्या जागा भरा

उत्तर

If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree 2.

Explanation:

Applying, C1→C1 + C2 + C3, we get

f(x) = `|(1 + (a^2 + b^2 + c^2 + 2)x, (1 + b^2)x, (1 + c^2)x),(1 + (a^2 + b^2 + c^2 + 2)x, 1 + b^2x, (1 + c^2)x),(1 + (a^2 + b^2 + c^2 + 2)x, (1 + b^2)x, (1 + c^2)x)|`  ...[∵ a2 + b2 + c2 = –2]

= `|(1, (1 + b^2)x, (1 + c^2)x),(1, 1 + b^2x, (1 + c^2)x),(1, (1 + b^2)x, (1 + c^2)x)|`

Applying, R2→R2 – R1, R3→R3 – R1

∴ f(x) = `|(1, (1 + b^2)x, (1 + c^2)x),(0, 1 - x, 0),(0, 0, 1 - x)|`

f(x) = (x – 1)2

Hence degree = 2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×