Advertisements
Advertisements
प्रश्न
If α and β are zeroes of a polynomial 6x2 − 5x + 1 then form a quadratic polynomial whose zeroes are α2 and β2.
बेरीज
उत्तर
Let P(x) = 6x2 − 5x + 1
The roots of P(x) are α and β.
So,
Sum of roots (α + β) = `(−b)/a`
= `(−(−5))/6`
= `5/6`
and,
Product of roots (αβ) = `c/a`
= `1/6`
Quadratic polynomial whose zeroes are α2 and β2.
So,
Required polynomial = q(x)
= x2 − (sum of zeroes)x + product of zeroes
= x2 − (α2 + β2) x + α2 β2
= x2 − [(α + β)2 − 2αβ] x + (αβ)2
= `x^2 − [(5/6)^2 − 2 × 1/6]x + (1/6)^2`
= `x^2 − (25/36 − 1/3) x + 1/36`
= `x^2 − ((25 − 12)/36) x + 1/36`
= `x^2 − 13/36 x + 1/36`
= 36x2 − 13x + 1
⇒ Required polynomial is 36x2 − 13x + 1.
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?