मराठी

If → a + → B + → C = → 0 , | → a | = 3 , ∣ ∣ → B ∣ ∣ = 5 , | → C | = 7 , Then the Angle Between → a and → B is -

Advertisements
Advertisements

प्रश्न

If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is 

पर्याय

  • (a) \[\frac{\pi}{6}\]  

  • (b) \[\frac{2\pi}{3}\] 

  • (c) \[\frac{5\pi}{3}\]

  • (d) \[\frac{\pi}{3}\] 

MCQ

उत्तर

(d) \[\frac{\pi}{3}\] 

\[\text{ Given }, \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5 \text{ and } \left| \vec{c} \right| = 7 . . . \left( i \right)\]

\[\text{ Let } \theta \text{ be the angle between } \vec{a} \text{ and } \vec{b} .\]

\[\text{ Given that }\]

\[ \vec{a} + \vec{b} + \vec{c} = 0\]

\[ \Rightarrow \vec{a} + \vec{b} = - \vec{c} \]

\[ \Rightarrow \left| \vec{a} + \vec{b} \right| = \left| - \vec{c} \right|^2 \]

\[ \Rightarrow \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 + 2 \vec{a} . \vec{b} = \left| \vec{c} \right|^2 \]

\[ \Rightarrow 2 \vec{a} . \vec{b} = \left| \vec{c} \right|^2 - \left| \vec{a} \right|^2 - \left| \vec{b} \right|^2 \]

\[ \Rightarrow 2 \vec{a} . \vec{b} = 7^2 - 3^2 - 5^2 \left[ \text{ Using } \left( i \right) \right]\]

\[ \Rightarrow 2 \vec{a} . \vec{b} = 15\]

\[ \Rightarrow 2 \left| \vec{a} \right| \left| \vec{b} \right| \cos \theta = 15\]

\[ \Rightarrow 2 \left( 3 \right) \left( 5 \right) \cos \theta = 15 \left[ \text{ Using } \left( i \right) \right]\]

\[ \Rightarrow \cos \theta = \frac{1}{2}\]

\[ \therefore \theta = \frac{\pi}{3}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×