मराठी

If a and B Can Take Values 1, 2, 3, 4. Then the Number of the Equations of the Form Ax2 + Bx + 1 = 0 Having Real Roots is - Mathematics

Advertisements
Advertisements

प्रश्न

If a and b can take values 1, 2, 3, 4. Then the number of the equations of the form ax2 +bx + 1 = 0 having real roots is

पर्याय

  • 10

  • 7

  • 6

  • 12

MCQ

उत्तर

Given that the equation `ax^2 +bx +1 = 0`.

For given equation to have real roots, discriminant (D) ≥ 0

⇒ b2 − 4a ≥ 0

⇒ b2 ≥ 4a

⇒ b ≥ 2√a

Now, it is given that a and b can take the values of 1, 2, 3 and 4.

The above condition b ≥ 2√a can be satisfied when

i) b = 4 and a = 1, 2, 3, 4

ii) b = 3 and a = 1, 2

iii) b = 2 and a = 1

So, there will be a maximum of 7 equations for the values of (a, b) = (1, 4), (2, 4), (3, 4), (4, 4), (1, 3), (2, 3) and (1, 2).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Quadratic Equations - Exercise 4.15 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 4 Quadratic Equations
Exercise 4.15 | Q 14 | पृष्ठ ८३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×