Advertisements
Advertisements
प्रश्न
If both the roots of the quadratic equation x2 – 2kx + k2 + k – 5 = 0 are less than 5, then k lies in the interval is ______.
पर्याय
(5, 6]
(6, ∞)
(–∞, 4)
[4, 5]
MCQ
रिकाम्या जागा भरा
उत्तर
If both the roots of the quadratic equation x2 – 2kx + k2 + k – 5 = 0 are less than 5, then k lies in the interval is (–∞, 4).
Explanation:
Given that both roots of quadratic equation are less than 5 then
(i) Discriminant ≥ 0
4k2 – 4(k2 + k – 5) ≥ 0
⇒ 4k2 – 4k2 – 4k + 20 ≥ 0
⇒ 4k ≤ 20
⇒ k ≤ 5
(ii) p(5) > 0
⇒ f(5) > 0 ; 25 – 10k + k2 + k – 5 > 0
⇒ k2 – 9k + 20 > 0
⇒ k(k – 4) – 5(k – 4) > 0
⇒ (k – 5) (k – 4) > 0
⇒ k ∈ (–∞, 4) ∪ (5, ∞)
(iii) `"Sum of roots"/2 < 5`
⇒ `-b/(2a) = (2k)/2 < 5`
⇒ k < 5
The intersection of (i), (ii) and (iii) gives k ∈ (–∞, 4).
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?