मराठी

If both the roots of the quadratic equation x2 – 2kx + k2 + k – 5 = 0 are less than 5, then k lies in the interval is ______. -

Advertisements
Advertisements

प्रश्न

If both the roots of the quadratic equation x2 – 2kx + k2 + k – 5 = 0 are less than 5, then k lies in the interval is ______.

पर्याय

  • (5, 6]

  • (6, ∞)

  • (–∞, 4)

  • [4, 5]

MCQ
रिकाम्या जागा भरा

उत्तर

If both the roots of the quadratic equation x2 – 2kx + k2 + k – 5 = 0 are less than 5, then k lies in the interval is (–∞, 4).

Explanation:

Given that both roots of quadratic equation are less than 5 then

(i) Discriminant ≥ 0

4k2 – 4(k2 + k – 5) ≥ 0

⇒ 4k2 – 4k2 – 4k + 20 ≥ 0

⇒ 4k ≤ 20

⇒ k ≤ 5

(ii) p(5) > 0

⇒ f(5) > 0 ; 25 – 10k + k2 + k – 5 > 0

⇒ k2 – 9k + 20 > 0

⇒ k(k – 4) – 5(k – 4) > 0

⇒ (k – 5) (k – 4) > 0


⇒ k ∈ (–∞, 4) ∪ (5, ∞)

(iii) `"Sum of roots"/2 < 5`

⇒ `-b/(2a) = (2k)/2 < 5`

⇒ k < 5

The intersection of (i), (ii) and (iii) gives k ∈ (–∞, 4).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×