Advertisements
Advertisements
प्रश्न
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.
पर्याय
`sqrt(145)/12`
`sqrt(145)/10`
`sqrt(146)/12`
`sqrt(145)/11`
उत्तर
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to `underlinebb(sqrt(145)/12)`.
Explanation:
`cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2;(x > 3/4)`
`\implies cos^-1(2/(3x)) = π/2 - cos^-1(3/(4x))`
`\implies cos^-1(2/(3x)) = sin^-1(3/(4x))` ...`[∵ sin^-1x + cos^-1x = π/2]`
Put `sin^-1(3/(4x))` = θ
`\implies` sin θ = `3/(4x)`
`\implies` cos θ = `sqrt(1 - sin^2θ) = sqrt(1 - 9/(16x^2))`
`\implies` θ = `cos^-1(sqrt(16x^2 - 9)/(4x))`
∴ `cos^-1(2/(3x)) = cos^-1(sqrt(16x^2 - 9)/(4x))`
`\implies 2/(3x) = sqrt(16x^2 - 9)/(4x)`
`\implies` x2 = `(64 + 81)/(9 xx 16)`
`\implies` x = `±sqrt(145/144)`
`\implies` x = `sqrt(145)/12` ...`(∵ x > 3/4)`