Advertisements
Advertisements
प्रश्न
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
पर्याय
(1, –3)
(1, 3)
(–1, 3)
(3, 1)
उत्तर
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to (1, 3).
Explanation:
Given: I = `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`
Let, sinx + cosx = t ....(i)
Squaring both sides, we get
(sinx + cosx)2 = t
⇒ sin2x + cos2x + 2sinxcosx = t2
⇒ 1 + 2sinxcosx = t2 ...(∵ sin2x + cos2x = 1)
⇒ sin2x = t2 = 1 ...(∵ 2sinxcosx = sin2x)
Differentiate equation (i) both sides w.r.t.x
(cosx – sinx)dx = dt ....(ii)
Putting value we get,
I = `int(dt)/sqrt(9 - t^2) = sin^-1(t/3) + c` ...`(∵ int (dx)/sqrt(a^2 - x^2) = sin^-1(x/a) + c)`
= `sin^-1((sinx + cosx)/3) + c`
Compare with `asin^-1((sinx + cosx)/b) + c`
∴ a = 1 and b = 3
Ordered pair (a, b) = (1, 3).