Advertisements
Advertisements
प्रश्न
If `dy/dx + 2y tan x = sin x, 0 < x < π/2` and `y(π/6)` = 0, then the maximum value of y(x) is ______.
पर्याय
`4/sqrt(3)`
`sqrt(3)/2`
0
`1/6`
उत्तर
If `dy/dx + 2y tan x = sin x, 0 < x < π/2` and `y(π/6)` = 0, then the maximum value of y(x) is `underlinebb(sqrt(3)/2)`.
Explanation:
Given, `dy/dx + 2y tan x = sin x, 0 < x < π/2`
Which is a linear differential equation.
Here, P = 2 tan x and Q = sin x
IF = `e^(intP dx)`
= `e^(2 int tan x dx)`
= `e^(2 log sec x)`
= sec2 x
∴ Required solution of differential equation,
y.IF = `int(Q xx IF) dx + C`
`\implies` y sec2 x = `int (sin x xx sec^2 x) dx + C`
= `int tan x sec dx + C`
∴ y sec2 x = sec x + C
As, `y(π/6)` = 0
`\implies 0 . sec^2 (π/6) = sec π/6 + C`
`\implies` C = `-2/sqrt(3)`
∴ y sec2 x = `sec x - 2/sqrt(3)` ...[From equation (i)]
`\implies` y = `cos x - 2/sqrt(3) cos^2 x`
= `-2/sqrt(3) (cos^2 x - sqrt(3)/2 cos x)`
= `- 2/sqrt(3)[cos^2 x - sqrt(3)/2 cos x + (sqrt(3)/4)^2 - (sqrt(3)/4)^2]`
= `- 2/sqrt(3) [(cos x - sqrt(3)/4)^2 - 3/4]`
= `3/(2sqrt(3)) - 2/sqrt(3) (cos x - sqrt(3)/4)^2`
Minimum vaIue of `(cos x - sqrt(3)/4)` is 0.
∴ Maximum value of y = `3/(2sqrt(3)) = sqrt(3)/2`