Advertisements
Advertisements
प्रश्न
If f(0) = 3, f'(0) = 2, then`"d"/("d"x) { log "f"(sin x + 3x^2)}` at x 0 is ______.
पर्याय
`2/3`
`3/2`
2
0
MCQ
रिकाम्या जागा भरा
उत्तर
If f(0) = 3, f'(0) = 2, then`"d"/("d"x) { log "f"(sin x + 3x^2)}` at x 0 is `2/3`.
Explanation:
Let y = `"d"/("d"x) [log"f"(sinx + 3x^2)]`
= `1/("f"(sin x + 3x^2)) * "d"/("d"x)["f"(sinx + 3x^2)]`
= `1/("f"(sinx + 3x^2))*"f'"(sinx + 3x^2)* "d"/("d"x) (sinx + 3x^2)`
= `("f'"(sinx + 3x^2)(cosx + 6x))/("f"(sinx + 3x^2))`
∴ `(y)_((x = 0)) = ("f'"(0).1)/("f"(0)) = 2/3`
shaalaa.com
Higher Order Derivatives
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?