Advertisements
Advertisements
प्रश्न
If `f(x) = 2x^2 - 13x^2 + 17x + 12` find f(2)
उत्तर १
We have
`f(x)=2x^2 -13x^2+17x+12`
`f(2)=2 xx(2)^3-13xx(2)^2+17xx(2)+12`
`=(2xx8)-(13xx4)+(17xx2)+12`
`=16-52-34+12=10`
उत्तर २
Substitute x = 2 into the function:
f(2) = 2(2)3 − 13(2)2 + 17(2) + 12
Calculate each term:
2(2)3 = 2 × 8 = 16
−13(2)2 = −13 × 4 = −52
17(2) = 34
The constant term is 12.
Combine the results:
f(2) = 16 − 52 + 34 + 12
Simplify:
f(2) = 16 − 52 = −36
36 + 34 = −2
2 + 12 = 10
Therefore, f(2) = 10.
APPEARS IN
संबंधित प्रश्न
Write the degrees of the following polynomials:
`12-x+2x^3`
Identify constant, linear, quadratic and cubic polynomials from the following polynomials:
`h(x)=-3x+1/2`
If `x = 2` is a root of the polynomial `f(x) = 2x2 – 3x + 7a` find the value of a.
\[f(x) = 3 x^4 + 2 x^3 - \frac{x^2}{3} - \frac{x}{9} + \frac{2}{27}, g(x) = x + \frac{2}{3}\]
If the polynomials 2x3 + ax2 + 3x − 5 and x3 + x2 − 4x +a leave the same remainder when divided by x −2, find the value of a.
Find the remainder when x3 + 3x2 + 3x + 1 is divided by \[x - \frac{1}{2}\].
Find the values of a and b so that (x + 1) and (x − 1) are factors of x4 + ax3 − 3x2 + 2x + b.
3x3 − x2 − 3x + 1
Let f(x) be a polynomial such that \[f\left( - \frac{1}{2} \right)\] = 0, then a factor of f(x) is
Factorise the following:
(a + b)2 + 9(a + b) + 18