Advertisements
Advertisements
प्रश्न
If f(x) is a quadratic polynomial such that f(0) = 3, f'(2) = 2 and f'(3) = 12 then find f(x)
उत्तर
Let f(x) = ax2 + bx + c; a ≠ 0, a, b, c ∈ R
f'(x) = `"d"/("d"x) ("a"x^2 + "b"x + "c")` = a × 2x + b × 1 + 0 = 2ax + b
It is given that f(0) = 3, f'(2) = 2 and f'(3) = 12
But f(0) = a(0) + b(0) + c = c, f'(2) = 2a(2) + b = 4a + b and f'(3) = 2a(3) + b = 6a + b
∴ c = 3
4a + b = 2 ...(1)
and 6a + b = 12 ...(2)
Subtracting (1) from (2), we get 2a = 10
∴ a = 5
∴ from (1), 4(5) + b = 2
∴ b = 2 – 20 = – 18
∴ f(x) = 5x2 – 18x + 3
APPEARS IN
संबंधित प्रश्न
Using L'Hospital's rule, evaluate : `lim_(x->0) (x - sinx)/(x^2 sinx)`
Using L ‘Hospital’s Rule, evaluate:
`lim_("x"->pi/2) ("x" "tan""x" - pi/4 . "sec" "x")`
Using L' Hospital's rule, evaluate:
`lim_("x"→0) (1/"x"^2 - cot"x"/"x")`
Using L’Hospital’s Rule, evaluate: limx → 0 ( 1 + sin x )cot x
If f(x) = a sin x – b cos x, `"f'"(pi/4) = sqrt(2) and "f'"(pi/6)` = 2, then find f(x)
If f(2) = 4, f′(2) = 1 then find `lim_(x -> 2) [(x"f"(2) - 2"f"(x))/(x - 2)]`