Advertisements
Advertisements
प्रश्न
If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.
पर्याय
- 1 and 1
- 2 and 2
2 and - 2
1 and - 1
MCQ
उत्तर
- 2 and 2
Explanation:
We have, f(x) = `x + 1/x, x ne 0`
On differentiating w.r.t. x, we get
f'(x) = `1 - 1/x^2` and f''(x)
For maxima or minima, we put f'(x) = 0
`=> 1 - 1/x^2` = 0
⇒ x2 - 1 = 0
⇒ x = -1, 1
Now, since f'(x) > 0, x ∈ (-1 - h, - 1) and
f'(x) < 0, x ∈ (-1, -1 + h)
⇒ x = - 1 is point of local maxima.
and local maxima value is f(-1) = `- 1 + 1/(- 1) = - 2`
and f'(x) < 0, when x ∈ (1- h, 1)
and f"(x) > 0, when x ∈ (1, 1+ h)
⇒ x = 1 is point of minima.
and local minima value, f(1) = `1 + 1/1 = 2`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?