Advertisements
Advertisements
प्रश्न
If p times the pth term of an A.P. is equal to q times qth term, then show that (p + q)th term of that A.P. is zero (p ≠ q).
उत्तर
Let a be the first term and d be the common difference of the given A.P.
Then p times pth term = q times qth term ...(Given)
∴ ptp = qtp
Now, tp = a + (p − 1)d and tq = a + (q − 1)d
∴ p[a + (p − 1)d] = q[a + (q − 1)d]
∴ p[a + (p − 1)d] − q[a + (q − 1)d] = 0
∴ ap + p(p − 1)d − qa − q(q − 1)d = 0
∴ ap − qa + (p − 1)d − q(q − 1)d = 0
∴ a(p − q) + (p2 − p)d − (q2 − q)d = 0
∴ a(p − q) + d[p2 − p − q2 + q] = 0
∴ a(p − q) + d[p2 − q2 − p + q] = 0
∴ a(p − q) + d[(p + q)(p − q) − (p − q)] = 0
∴ a(p − q) + d(p − q)(p + q − 1)] = 0
∴ (p − q) [a + d(p + q − 1)] = 0
∴ a + d(p + q − 1) = 0 ...[Dividing by (p − q). ∵ (p − q) ≠ 0] ...(1)
Now, (p + q)th term of the A.P. = a + (p + q − 1)d ...(2)
∴ from (1) and (2),
(p + q)th term of the A.P. is zero.
i.e. `t_((p + q)) = 0`