Advertisements
Advertisements
प्रश्न
If P(x1, y1) is a point on the hyperbola x2 - y2 = a2, then SP. S'P = ______.
पर्याय
`(x_1^2 - y_1^2)/"a"^2`
`(x_1^2 + y_1^2)/"a"^2`
`x_1^2 - y_1^2`
`x_1^2 + y_1^2`
MCQ
रिकाम्या जागा भरा
उत्तर
If P(x1, y1) is a point on the hyperbola x2 - y2 = a2, then SP. S'P = `underline(x_1^2 + y_1^2)`.
Explanation:
Given, equation of hyperbola
x2 - y2 = a2
If P(x1, y1) is a point on Eq. (i), then
`x_1^2 + y_1^2 = "a"^2`
Now, SP = ex1 - a
and SP' = ex1 + a
∴ SP · SP' = (ex1 - a)(ex1 + a)
`= "e"^2 * x_1^2 - "a"^2`
`= 2x_1^2 - "a"^2 ...("since", "for" x^2 - y^2 = "a"^2, "e" = sqrt2)`
`= 2x_1^2 - (x_1^2 - y_1^2)` ....[using Eq. (i)]
`= x_1^2 + y_1^2`
shaalaa.com
Conic Sections - Hyperbola
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?