Advertisements
Advertisements
प्रश्न
If ∑ p0q0 = 120, ∑ p0q1 = 160, ∑ p1q1 = 140, ∑ p1qo = 200, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.
बेरीज
उत्तर
Given,
`sum"P"_0"q"_0 = 120, sum"p"_0"q"_1 = 160`,
`sum"p"_1"q"_1 = 140, sum"p"_1"q"_0 = 200`
Laspeyre’s Price Index Number:
P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100`
= `(200)/(120) xx 100` = 166.67
Laspeyre’s Price Index Number:
P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100`
= `(140)/(160) xx 100` = 87.5
Dorbish-Bowley’s Price Index Number:
P01(D–B) = `("P"_01("L") + "P"_01("P"))/(2)`
= `(166.67 + 87.5)/(2)` = 127.085
Marshall-Edgeworth’s Price Index Number:
P01(M–E) = `(sum"p"_1"q"_0 + sum"p"_1"q"_1)/(sum"p"_0"q"_0 + sum"p"_0"q"_1) xx 100`
= `(200 + 140)/(120 + 160) xx 100`
= 121.43
shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?