Advertisements
Advertisements
प्रश्न
If the point A(x,2) is equidistant form the points B(8,-2) and C(2,-2) , find the value of x. Also, find the value of x . Also, find the length of AB.
उत्तर
As per the question
AB = AC
`⇒ sqrt((x-8)^2+(2+2)^2 ) = sqrt((x-2)^2 +(2+2)^2)`
Squaring both sides, we get
`(x-8)^2 +4^2 = (x - 2)^2 +4^2`
`⇒ x^2 -16x+64+16=x^2+4-4x+16`
`⇒ 16x-4x=64-4`
`⇒ x = 60/12=5`
Now,
`AB = sqrt((x-8)^2 +(2+2)^2)`
`= sqrt((5-8)^2 +(2+2)^2) (∵ x =2)`
`=sqrt((-3)^2 +(4)^2)`
`=sqrt(9+16) = sqrt(25)=5`
Hence, x = 5and AB = 5 units.
APPEARS IN
संबंधित प्रश्न
If the distance between the points (4, k) and (1, 0) is 5, then what can be the possible values of k?
The length of a line segment is of 10 units and the coordinates of one end-point are (2, -3). If the abscissa of the other end is 10, find the ordinate of the other end.
Find the distance of the following points from the origin:
(iii) C (-4,-6)
Using the distance formula, show that the given points are collinear:
(-2, 5), (0,1) and (2, -3)
If the point P(2, 1) lies on the line segment joining points A(4, 2) and B(8, 4), then ______.
Prove that the points (7 , 10) , (-2 , 5) and (3 , -4) are vertices of an isosceles right angled triangle.
A(2, 5), B(-2, 4) and C(-2, 6) are the vertices of a triangle ABC. Prove that ABC is an isosceles triangle.
Calculate the distance between A (7, 3) and B on the x-axis whose abscissa is 11.
Case Study -2
A hockey field is the playing surface for the game of hockey. Historically, the game was played on natural turf (grass) but nowadays it is predominantly played on an artificial turf.
It is rectangular in shape - 100 yards by 60 yards. Goals consist of two upright posts placed equidistant from the centre of the backline, joined at the top by a horizontal crossbar. The inner edges of the posts must be 3.66 metres (4 yards) apart, and the lower edge of the crossbar must be 2.14 metres (7 feet) above the ground.
Each team plays with 11 players on the field during the game including the goalie. Positions you might play include -
- Forward: As shown by players A, B, C and D.
- Midfielders: As shown by players E, F and G.
- Fullbacks: As shown by players H, I and J.
- Goalie: As shown by player K.
Using the picture of a hockey field below, answer the questions that follow:
The coordinates of the centroid of ΔEHJ are ______.
The distance of the point P(–6, 8) from the origin is ______.