मराठी

If the sum of n terms of an A.P. is 3n2 + 5n then which of its terms is 164? - Mathematics

Advertisements
Advertisements

प्रश्न

If the sum of n terms of an A.P. is 3n2 + 5n then which of its terms is 164?

पर्याय

  •  26th

  •  27th

  •  28th

  • none of these.

MCQ

उत्तर

Here, the sum of first n terms is given by the expression,

Sn = 3n2 + 5n

We need to find which term of the A.P. is 164.

Let us take 164 as the nth term

So we know that the nthterm of an A.P. is given by,

an = Sn - Sn-1

So,

164 = Sn - Sn-1

164 = 3n2 + 5n - [3(n-1)2 +5(n-1) ] 

Using the property,

( a - b)2 = a2 + b2 - 2ab

We get,

164 = 3n2 + 5n - [3(n2 + 1 - 2n) + 5 ( n-1)] 

164 = 3n2 + 5n - [3n2 + 3 - 6n + 5n - 5]

164 = 3n2 + 5n -(3n2 - n - 2)

164 = 3n2 + 5n - 3n2 + n + 2

164 = 6n + 2

Further solving for n, we get

6n = 164 - 2  

  `n = 162/6`

    n = 27

Therefore,  164 is the 27th term of the given A.P. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Arithmetic Progression - Exercise 5.8 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 5 Arithmetic Progression
Exercise 5.8 | Q 5 | पृष्ठ ५७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×