Advertisements
Advertisements
प्रश्न
If the payment of ₹ 2,000 is made at the end of every quarter for 10 years at the rate of 8% per year, then find the amount of annuity. [(1.02)40 = 2.2080]
उत्तर
Here a = 2,000, n = 10 years, and `"i"/"k" = (8/100)/4 = 2/100` = 0.02
A = `"a"/("i"/"k") [(1 + "i"/"k")^("nk") - 1]`
= `200/0.2 [(1 + 0.02)^(10 xx 4) - 1]`
= `200000/2 [(1 + 0.02)^40 - 1]`
= 100000 [2.2080 – 1] .........[∵ (1.02)40 = 2.2080]
= 100000 [1.2080]
= ₹ 1,20,800
APPEARS IN
संबंधित प्रश्न
Find the amount of an ordinary annuity of 12 monthly payments of ₹ 1,500 that earns interest at 12% per annum compounded monthly. [(1.01)12 = 1.1262]
A bank pays 8% per annum interest compounded quarterly. Find the equal deposits to be made at the end of each quarter for 10 years to have ₹ 30,200? [(1.02)40 = 2.2080]
Find the present value of ₹ 2,000 per annum for 14 years at the rate of interest of 10% per annum. If the payments are made at the end of each payment period. [(1.1)–14 = 0.2632]
Find the present value of an annuity of ₹ 900 payable at the end of 6th month for 6 years. The money compounded at 8% per annum. [(1.04)–12 = 0.6252]
Find the amount at the end of 12 years of an annuity of ₹ 5,000 payable at the beginning of each year, if the money is compounded at 10% per annum. [(1.1)12 = 3.1384]
What is the present value of an annuity due of ₹ 1,500 for 16 years at 8% per annum? What is the present value of an annuity due of ₹ 1,500 for 16 years at 8% per annum? [(1.08)16 = 3.172]
₹ 5000 is paid as perpetual annuity every year and the rate of C.I. 10%. Then present value P of immediate annuity is __________.
An annuity in which payments are made at the beginning of each payment period is called ___________.
The present value of the perpetual annuity of ₹ 2000 paid monthly at 10% compound interest is ___________.
Machine A costs ₹ 15,000 and machine B costs ₹ 20,000. The annual income from A and B are ₹ 4,000 and ₹ 7,000 respectively. Machine A has a life of 4 years and B has a life of 7 years. Find which machine may be purchased. (Assume discount rate 8% p.a) [(1.08)–4 = 0.7350, (1.08)–7 = 0.5835]