Advertisements
Advertisements
प्रश्न
If the probability density function of a random variable X is given as
x1 | –2 | –1 | 0 | 1 | 2 |
P(X = x1) | 0.2 | 0.3 | 0.15 | 0.25 | 0.1 |
then F(0) is equal to
पर्याय
P(X < 0)
P(X > 0)
1 – P(X > 0)
1 – (X < 0)
MCQ
उत्तर
1 – P(X > 0)
Explanation:
Since, cumulative distribution function
F(x) = P(X ≤ x)
So, F(0) = P(X ≤ 0)
= P(X = 0) + P(X = –1) + P(X = –2)
= 0.15 + 0.3 + 0.2
= 0.65
(a) P(X < 0) = P(X = –1) + P(X = –2)
= 0.3 + 0.2
= 0.5
Therefore, P(X < 0) ≠ F (0)
(b) P(X > 0) = P(X = 1) + P(X = 2)
= 0.25 + 0.1
= 0.35
Thus, P(X > 0) ≠ F (0)
(c) 1 – P(x > 0)
= 1 – 0.35
= 0.65
Hence, 1 – P(X > 0) = F(0)
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?