मराठी

If the system of linear equations 2x + y – z = 7 x – 3y + 2z = 1 x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______. -

Advertisements
Advertisements

प्रश्न

If the system of linear equations

2x + y – z = 7

x – 3y + 2z = 1

x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.

पर्याय

  • –3

  • 3

  • 6

  • 9

MCQ
रिकाम्या जागा भरा

उत्तर

If the system of linear equations

2x + y – z = 7

x – 3y + 2z = 1

x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to 3.

Explanation:

Given: A system of linear equation has infinitely many solution.

2x + y – z = 7

x – 3y + 2z = 1

x + 4y + δz = k

As we know, if a system of linear equations

a1x + b1y + c1z = d1

a2x + b2y + c3z = d2

a3x + b2y + c3z = d3

has infinitely many solutions then, D = D1 = D2 = D3 = 0

Where D = `|(a_1, b_1, c_1),(a_2, b_2, c_2),(a_3, b_3, c_3)|`, D1 = `|(d_1, b_1, c_1),(d_2, b_2, c_2),(d_3, b_3, c_3)|`,

D2 = `|(a_1, d_1, c_1),(a_2, d_2, c_2),(a_3, d_3, c_3)|` and D3 = `|(a_1, b_1, d_1),(a_2, b_2, d_2),(a_3, b_3, d_3)|`

So, D = `|(2, 1, -1),(1, -3, 2),(1, 4, δ)|` = 0

⇒ 2(–3δ – 8) – 1(δ – 2) – 1(4 + 3) = 0

⇒ –6δ – 16 – δ + 2 – 7 = 0

⇒ 7δ = –21

⇒ δ = –3

Also, D3 = `|(2, 1, 7),(1, -3, 1),(1, 4, k)|` = 0

⇒ 2(–3k – 4) – 1(k – 1) + 7(4 + 3) = 0

⇒ –6k – 8 – k + 1 + 49 = 0

⇒ 7k = 42

⇒ k = 6

⇒ δ + k = –3 + 6 = 3

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×