Advertisements
Advertisements
प्रश्न
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.
पर्याय
–3
3
6
9
उत्तर
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to 3.
Explanation:
Given: A system of linear equation has infinitely many solution.
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k
As we know, if a system of linear equations
a1x + b1y + c1z = d1
a2x + b2y + c3z = d2
a3x + b2y + c3z = d3
has infinitely many solutions then, D = D1 = D2 = D3 = 0
Where D = `|(a_1, b_1, c_1),(a_2, b_2, c_2),(a_3, b_3, c_3)|`, D1 = `|(d_1, b_1, c_1),(d_2, b_2, c_2),(d_3, b_3, c_3)|`,
D2 = `|(a_1, d_1, c_1),(a_2, d_2, c_2),(a_3, d_3, c_3)|` and D3 = `|(a_1, b_1, d_1),(a_2, b_2, d_2),(a_3, b_3, d_3)|`
So, D = `|(2, 1, -1),(1, -3, 2),(1, 4, δ)|` = 0
⇒ 2(–3δ – 8) – 1(δ – 2) – 1(4 + 3) = 0
⇒ –6δ – 16 – δ + 2 – 7 = 0
⇒ 7δ = –21
⇒ δ = –3
Also, D3 = `|(2, 1, 7),(1, -3, 1),(1, 4, k)|` = 0
⇒ 2(–3k – 4) – 1(k – 1) + 7(4 + 3) = 0
⇒ –6k – 8 – k + 1 + 49 = 0
⇒ 7k = 42
⇒ k = 6
⇒ δ + k = –3 + 6 = 3