Advertisements
Advertisements
प्रश्न
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
पर्याय
b = `π/2 + a`
|a + b| = 1
|b – a| = 1
b = a
MCQ
रिकाम्या जागा भरा
उत्तर
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then |b – a| = 1.
Explanation:
Given y = x + siny at a point (a, b) ...(i)
parallel to `(0, 3/2)(1/2, 2)`
`(dy)/(dx) = 1 + cosy (dy)/(dx)`
`(dy)/(dx) = 1/(1 - cosy)`
`(dy)/(dx)(a, b) = 1/(1 - cosb)` ...(i)
Slope `(2 - 3/2)/(1/2 - 0) = 1/(1 - cosb)` ...(ii)
Now, `1/(1 - cosb)` = 1
cosb = 0
b = `π/2, (3π)/2`
Equation (i)
b = a + sinb
b = a + 1 ...`("For" b = π/2)`
b = a – 1 ...`("For" b = (3π)/2)`
|b – a| = 1
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?