Advertisements
Advertisements
प्रश्न
If the vector `vecb = 3hatj + 4hatk` is written as the sum of a vector `vec(b_1)`, parallel to `veca = hati + hatj` and a vector `vec(b_2)`, perpendicular to `veca`, then `vec(b_1) xx vec(b_2)` is equal to ______.
पर्याय
`-3hati + 3hatj - 9hatk`
`6hati - 6hatj + 9/2hatk`
`-6hati + 6hatj - 9/2hatk`
`3hati - 3hatj + 9hatk`
उत्तर
If the vector `vecb = 3hatj + 4hatk` is written as the sum of a vector `vec(b_1)`, parallel to `veca = hati + hatj` and a vector `vec(b_2)`, perpendicular to `veca`, then `vec(b_1) xx vec(b_2)` is equal to `underlinebb(6hati - 6hatj + 9/2hatk)`.
Explanation:
Given, `vecb = 3hatj + 4hatk`
According to the question,
`vecb = vecb_1 + vecb_2` ...(i)
Here, `b_1 || veca` and `b_2 ⊥ a`
`\implies b_1 = λveca`
and b2 = `b_2.veca` = 0
now b1 = `λ(hati + hatj)` ...`{∵ hata = hati + hatj}`
from (1) `vecb_2 = vecb - vecb_1`
So, `vecb_2.veca` = 0
`\implies (vecb - vecb_1)(hati + hatj)` = 0
`\implies vecb(hati - hatj) - λhata(hati - hatj)` = 0
`\implies (3hatj + 4hatk)(hati - hatj) - λ(hati - hatj)(hati - hatj)` = 0
`\implies` λ = `3/2`
now `vecb_2 = vecb - vecb_1`
`\implies (3hatj + 4hatk) - 3/2(hati + hatj)`
`\implies (-3)/2hati + 3/2hatj + 4hatk`
and `vec(b_1) xx vec(b_2) = |(hati, hatj, hatk),(3/2, 3/2, 0),(-3/2, 3/2, 4)|`
`\implies vec(b_1) xx vec(b_2) = hati(6) - hatj(6) + hatk(-9/4 + 9/4)`
`\implies 6hati - 6hatj + 9/2hatk`