Advertisements
Advertisements
प्रश्न
If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.
पर्याय
True
False
उत्तर
This statement is True.
Explanation:
Let α, β and γ be the zeroes of a cubic polynomial and given that two of the given zeroes have value 0.
Let β = γ = 0 and
p(x) = (x – α)(x – β)(x – γ)
= (x – α)(x – 0)(x – 0)
= x3 – αx2
Which does not have linear and constant terms.
APPEARS IN
संबंधित प्रश्न
Find the zeros of the quadratic polynomial 4x2 - 9 and verify the relation between the zeros and its coffiecents.
Find a quadratic polynomial with the given numbers as the sum and product of its zeroes, respectively.
`sqrt2 , 1/3`
Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, − 7, − 14 respectively
If α and β are the zeroes of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate `1/(aalpha+b)+1/(abeta+b)`.
If α and β are the zeros of the quadratic polynomial f(x) = x2 − 3x − 2, find a quadratic polynomial whose zeroes are `1/(2alpha+beta)+1/(2beta+alpha)`
Verify that 5, -2 and 13 are the zeroes of the cubic polynomial `p(x) = (3x^3 – 10x^2 – 27x + 10)` and verify the relation between its zeroes and coefficients.
If 𝛼, 𝛽 are the zeroes of the polynomial `f(x) = 5x^2 -7x + 1` then `1/∝+1/β=?`
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`7y^2 - 11/3 y - 2/3`
If one zero of the polynomial p(x) = 6x2 + 37x – (k – 2) is reciprocal of the other, then find the value of k.
Find the sum and product of the roots of the quadratic equation 2x2 – 9x + 4 = 0.